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Fig. 1: IC3D, our 3D shape generation pipeline. A joint image-shape embedding space is preemptively learned through our
pre-training model CISP (Contrastive Image-Shape Pre-training). Given a query image, we generate its CISP embeddings and
use them, together with additional context, to condition a 3D Denoising Diffusion Probabilistic Model (DDPM). In this fashion,
IC3D can generate diverse 3D shapes, all maintaining both realism and coherence with the query image./

Abstract—In recent years, Denoising Diffusion Probabilistic
Models (DDPMs) have demonstrated exceptional performance
in various 2D generative tasks. Following this success, DDPMs
have been extended to 3D shape generation, surpassing previous
methodologies in this domain. While many of these models
are unconditional, some have explored the potential of using
guidance from different modalities. In particular, image guidance
for 3D generation has been explored through the utilization
of CLIP embeddings. However, these embeddings are designed
to align images and text, and do not necessarily capture the
specific details needed for shape generation. To address this
limitation and enhance image-guided 3D DDPMs with augmented
3D understanding, we introduce CISP (Contrastive Image-Shape
Pre-training), obtaining a well-structured image-shape joint em-
bedding space. Building upon CISP, we then introduce IC3D,
a DDPM that harnesses CISP’s guidance for 3D shape gener-
ation from single-view images. This generative diffusion model
outperforms existing benchmarks in both quality and diversity
of generated 3D shapes. Moreover, despite IC3D’s generative
nature, its generated shapes are preferred by human evaluators
over a competitive single-view 3D reconstruction model. These
properties contribute to a coherent embedding space, enabling
latent interpolation and conditioned generation also from out-of-
distribution images. We find IC3D able to generate coherent and
diverse completions also when presented with occluded views,
rendering it applicable in controlled real-world scenarios.

I. INTRODUCTION

Recent years have witnessed astonishing advances in deep
generative models, especially in image generation. Denoising
Diffusion Probabilistic Models (DDPMs) played a central
role in this progress, outperforming previous methods such
as variational autoencoders (VAEs) and generative adversarial
networks (GANS) in unconditional image synthesis [1] and
text-to-image synthesis. Works such as GLIDE [2], DALLE-
2 [3], Stable Diffusion [4], and Imagen [5] showed, indeed,
how we can effectively condition the generation of images by
text prompts.

Transitioning from 2D image generation to 3D shape
generation presents challenges, although recent years have
witnessed notable progress in this field. Following the initial
wave of VAEs and GAN architectures [6], [7], a subsequent
wave of models has focused on flow-based and energy-based
paradigms [8], [9], [10], showcasing their efficacy in gener-
ating high-quality and diverse shapes. Recent studies have
not only demonstrated DDPMs’ superiority in shape quality
and diversity compared to previous approaches, but have also
showcased the potential to condition the generation process
using various modalities, such as text prompts [I1], shape



latents from autoencoders [!2], and single-view images [13].

In particular, the latter—image-to-shape generation—, is
pivotal for driving innovation across diverse fields like VR
and AR, cultural heritage, medical imaging and diagnosis,
and industrial design and manufacturing. Image-conditioned
3D generation has been experimented [I3] by leveraging
CLIP [14] image embeddings as guidance tokens. However,
the inherent alignment of text and images within CLIP em-
beddings may not optimally suit guiding an image-to-shape
diffusion process, potentially leading to loss of fine-grained
details crucial for shape generation.

Motivated by this insight, in this work we propose the
construction of a CLIP-inspired joint image-shape embedding
space, named CISP (Contrastive Image-Shape Pre-training).
We show that this embedding space not only exhibits a well-
organized structure but also captures the inherent semantic
structural characteristics of the represented objects. We exploit
this regularity to condition a 3D diffusion model through
classifier-free guidance [15], leveraging CISP to steer the
generated shapes toward the desired image context. As our aim
is to investigate the advantages of image-shape embeddings
for 3D generation, we focus on voxels, to avoid additional
architectural complexities due to other representations such
as point clouds. We find that IC3D generates image-coherent
yet diverse shape samples from single-view images, and it
achieves cutting edge results for both quality and diversity
also in unconditional generation. Thanks to the structural
properties acquired via CISP guidance, the shapes modeled
by IC3D are preferred by human assessors in terms of quality
and coherence also when compared to a single-view 3D
reconstruction model, despite IC3D being a generative model.
We show the regularity of CISP embeddings through manifold
interpolation and OOD probing experiments. Furthermore, we
test IC3D’s resilience to occluded views and demonstrate its
potential for automated deployment in controlled real-world
scenarios.

II. RELATED WORKS

Various strategies have been put forth to develop generative
models with the ability to synthesize three-dimensional (3D)
objects. Notable methodologies encompass early Variational
Autoencoders (VAEs) [16] and Generative Adversarial Net-
works (GANSs) [17] applied to 3D voxelized shapes, as well
as the more recent SDF-StyleGAN [18], which constructs a
generative model based on an SDF-based implicit represen-
tation. The research in this domain has also seen a growing
interest in generative techniques like flow-based models [19],
Energy-Based Models (EBMs) [20], and Denoising Diffusion
Probabilistic Models (DDPMs) [21], [22]. Flow-based models,
such as DPF-Net [23], manipulate probability distributions to
generate samples through variable transformations. EBMs, ex-
emplified by 3D DescriptorNet [ 0], optimize energy functions
over observed variables and generate new data via Langevin
Dynamics [24], [25]. On the other hand, DDPMs train using
a denoising objective and subsequently invert the process to
generate samples from noise.

Point-Voxel Diffusion (PVD) [26] employs point-voxel
CNN [27] to generate point cloud shapes, also highlighting the

inability of training a voxel-based DDPM. Additionally, PVD
necessitates separate training for different shape categories due
to its unconditional nature. A contrasting approach presented
by Luo and Hu [12] involves a point-cloud DDPM conditioned
on shape latents extracted from a point cloud autoencoder,
enabling a single model to generate diverse object categories.
Hui et al. [28] employ diffusion on SDFs wavelet coefficients
to generate coarse volumes and a refiner network to predict
details. Leveraging latent diffusion, LION [13] demonstrates
image-conditioning of a 3D generation model using CLIP [14]
text or image embeddings. However, although well-structured,
CLIP embeddings inherently lack 3D features, and their use
in 3D generation might lead to loss of fine-grained structural
shape details that are not captured by images and text. On the
contrary, joint image-shape embeddings would overcome this
limitation.

Joint image-shape embeddings have been investigated by
Li et al. [29], establishing a joint image-shape embedding
space through a multistep process. It begins by constructing
an embedding space for shapes based on shape similarities
and then learns to associate images with their correspond-
ing shape embeddings. In contrast, Kuo et al. [30] adopt a
holistic approach, jointly learning image and 3D CAD shape
embeddings. This concept is further extended in [3 1], learning
an image patch-CAD shape mapping. Imagebind [32] shows
instead how we can align multiple modalities to images with
a contrastive approach. However, they only focus on depth
maps, which do not fully capture the 3D scene and may this
lose critical 3D information. On the other hand, we propose
to retain full 3D information by extending the contrastive
methodology in [14] directly to image-shape domain, with
voxels as 3D representation.

III. CONTRASTIVE IMAGE-SHAPE PRE-TRAINING

To condition the 3D shape generation on images, we require
a meaningful and well-structured concept space jointly encod-
ing both 2D and 3D information. We obtain this space with
CISP (Contrastive Image-Shape Pre-training), which learns to
embed images and shapes in a joint space. The CISP pre-
training method follows the procedure described in CLIP [14].
In particular, it uses a contrastive approach to learn meaningful
representations of images and shapes in a joint space. We
define an encoder E; processing shapes and an encoder E;
processing images, both producing embeddings of size f.
Given a batch containing N corresponding (image, shape)
pairs, our training objective is to match each image with its
shape. We produce the batches of image and shape embeddings
e; and e, using E; and F,. We then compute a symmetric
N x N similarity matrix between image embeddings (rows)
and shape embeddings (columns), using a cosine similarity
measure. Our training loss is composed of two cross-entropy
terms, measuring both the ability to predict the correct shape
given an image and vice-versa. This objective aims at maxi-
mizing the similarity of the N matching (image, shape) pairs
and, at the same time, minimizing the similarity of the N2 — N
unmatching pairs. For the implementation details, we refer the
reader to [14].



In CLIP, Radford et al. [14] adopt a Vision Transformer
(ViT) [33] as image encoder. They found it to produce better
results and higher computational efficiency compared to CNN
architectures when trained on a sufficiently large dataset. As
the dataset we use (Sec. V) is limited, however, we employ a
Data-efficient image Transformer (DeiT) [34], i.e., DeiT Base
(DeiT-B), using 768-dimensional hidden embeddings and 12
layers with 12 attention heads each.

As shape encoder, we extend the ViT model to 3D. We
replace the 2D convolutions, mapping an image to patch
embeddings, with 3D convolutions mapping a voxel shape
to patch embeddings. A learnable token is prepended to the
input sequence, processed by the network, and then projected
to the desired embedding dimension. This technique allows us
to easily extract the image (or shape) CISP embedding, and
is inspired by class tokens first used in NLP [35] and later
introduced in ViT [33].

IV. SHAPE GENERATION PIPELINE

Figure 1 shows our image-driven shape generation pipeline,
which is inspired by 2D text-to-image works [3], [2]. From the
input query image we obtain its CISP embedding, carrying
information about its 3D shape, and some additional image
tokens, encoding information not captured by CISP. We lever-
age these embeddings to guide our DDPM generative process.
As DDPMs are iterative methods, they require information
about the current timestep, which is encoded by sinusoidal
embeddings [36]. Our DDPM module iteratively refines an
input 3D tensor, which is finally transformed into the output
shape by binary thresholding. We report a detailed description
of DDPMs in the supplementary material.

A. Architecture

We extend the architecture used in GLIDE [2], which is
based on the ADM model [!]. Specifically: (1) we replace
2D convolutions with 3D convolutions; (2) we replace the
text encoder with an image encoder E., which we chose to
be a DeiT [34] model; (3) as in [3], we use CISP image
embeddings in two ways: first, we project and add them to
the timestep embedding; second, in each attention block of
the network, we project CISP embeddings into four extra
tokens and we concatenate them to the attention context (keys,
values); (4) we prepend 8 learnable tokens to F. and use the
corresponding outputs as additional attention context, as with
CISP embeddings.

B. Guidance

We leverage CISP to train a single DDPM on all the
considered object categories, guiding the generation by using
CISP image embeddings. To this end, we train our model with
classifier-free guidance [!5], which eliminates the need for a
separate classifier and obtains similar results compared to clas-
sifier guidance [22]. We report the mathematical formulation
of classifier-free guidance and guidance scale analysis in the
supplementary material.
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Fig. 2: 3D shapes generated by IC3D from the query images on
the left. Notice how each shape is diverse and yet it coherently
represents structural elements of the query (e.g., flat-topped
tail of the airplane, cargo space of the pickup truck, wheels
and armrests of the chair.)
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V. EXPERIMENTS

We run experiments to evaluate our generative pipeline
quantitatively and qualitatively. We compare our model
against state-of-the-art 3D generative approaches to quanti-
tatively evaluate our generated shapes, following evaluation
approaches and metrics defined by the literature. Furthermore,
we evaluate the effectiveness of our guidance approach and the
visual quality of generated shapes through a human evaluation
experiment. Lastly, we investigate the representation and gen-
eralization capabilities of CISP and IC3D through additional
experiments and ablations.

Following previous shape generation works [26], [12], [9],
[8], [13], we focus on the Airplane, Car, and Chair categories
from the ShapeNet [37] test set. Although not used in previous
works, we also train our model on the Table and Watercraft
categories; see the supplementary material for the results of
these two additional categories. Notice that, except for the
unconditional experiments, we refer to IC3D as a single model
trained on all categories.

A. Shape Generation

The generation of shapes is performed using the inverse
diffusion process. In particular, we first generate a pure noise
sample of dimension 323, and then run 1000 backward dif-
fusion steps. We obtain a 323 float tensor which we voxelize
through binary thresholding (threshold at 0.5). For conditional
generation, we apply classifier-free guidance as explained in
Sec. IV-B, with a guidance factor of 1.5, as we found it
produces the best results. Figure 2 shows examples of image-
guided generation from our model.

We evaluate the quality and diversity of shapes generated
by our model by comparing against other 3D generative
works [38], [23], [28], [12], [26], [13] and we report results
in Tab. I. Since these models only evaluate unconditional
generation, we also configure our pipeline to match this setting
for a fair comparison. To achieve unconditional generation
with our model, we conduct experiments on each category
without guiding images, substituting CISP embeddings and
E, tokens with learned null tokens (only at test time). We



1-NNA(%)

Shape Model CD EMD
Shape-GF [38]  80.00  76.17
DPF-Net [23] 75.18  65.55
[28] 71.69 66.74
Airplane  [12] 6271 67.14
PVD [26] 73.82  64.81
LION [13] 6741 61.23
Ours 58.93 56.93
Shape-GF [38]  63.20  56.53
DPF-Net [23] 62.35 54.48
(28] - -
Car [12] - -
PVD [26] 54.55 53.83
LION [13] 53.70 52.34
Ours 53.20 53.11
Shape-GF [38] 68.96 6548
DPF-Net [23] 62.00 58.53
[28] 61.47 61.62
Chair [12] 62.08 64.45
PVD [20] 56.26  53.32
LION [13] 53.41 51.14
Ours 53.30 51.97

TABLE I: Comparison of unconditional generation perfor-
mance of IC3D against baselines and SoTA 3D generative
models. Best results are highlighted in bold. 1-NNA perfect
score is 50%. The car category was not evaluated in [12]
and [28].

compare mainly on 1-Nearest Neighbor Accuracy (1-NNA),
as it was shown to be the most representative metric for 3D
generation [9]. We report in the supplementary material results
for other common generation metrics, i.e., Minimum Matching
Distance (MMD), Coverage (COV) and Shading-image-based
FID [18], where IC3D also obtains competitive results. For
each metric, we consider both Chamfer distance (CD) and
Earth Mover’s Distance (EMD).

1-NNA, presented in [39] and adopted for 3D generation
in [9], measures both generated samples diversity and quality
by considering the accuracy of a 1-Nearest Neighbor classifier.
We define S, as the set of generated samples and S, as the set
of reference samples (which we take from the test set) with
|Sr| = |Sg4|. Also, let N, be the nearest neighbor of a sample
x, with N, € {S; U S, — z}. 1-NNA is then defined as

S INs € Sg] + 3 I[Ns € Sr]
€S TES,

1Sg| +1Sr| ’

1-NNA(Sy, Sy) = (1)
with I being the indicator function. As we are measuring the
accuracy of a 1-NN classifier on recognizing generated and
reference shape, a value of 50% is the perfect score.

To make voxel shapes compatible with EMD and CD, we
follow the approach from PVD [26], sampling 2048 points
from the surface of the generated shape. We also adopt metrics
implementations from PVD [26] public code. Our method
outperforms or is on par with other models in terms of quality
and diversity, achieving higher results on the airplane class
and comparable results with LION [13] on cars and chairs. As
LION [13] also allows for image guidance, but only evaluates
on unconditional generation, we furhter compare these two
models qualitatively in Fig. 3. Thanks to CISP guidance, our

Ours
(point cloud)

Fig. 3: Thanks to CISP guidance, our model is able to
match finer-grained details of the guiding image with respect
to LION [13], which uses CLIP. For our model, we show
generated voxels and the corresponding sampled point cloud.

model is better able to generate shapes that are coherent with
the input image in most details, as we can observe with the
plane back engines and the chair circular hole.

We further analyze the quality of our results running a
side-by-side human evaluation, comparing our model with a
SoTA 3D reconstruction approach. We evaluate how well our
generated shapes match query images, as well as their realism.
Each human evaluator is presented with two unlabeled and
randomly ordered 3D shapes, one from our model and one
from a reconstruction model. The evaluator is asked to choose
which of the two shapes is more realistic. After its choice, the
query image is shown, and the evaluator has to choose which
shape is more coherent with the displayed image. We chose to
only show the query image after the first question is answered
to avoid biasing the evaluator when selecting the most realistic
shape. Shapes are displayed as GIFs rotating 360° around their
volume, allowing the evaluator to see each shape from different
perspectives. Following the method from [40], we show each
pair of images exactly to 5 independent annotators, allowing
us to reduce the variance on each pair by majority voting.

We compare against 3D-RETR [41], the best-performing
publicly available model for single-view 3D reconstruction at
the time of the experiment. We select 200 random images per
category (airplane, car, chair) and use them to condition our
model and to predict the shapes using 3D-RETR, obtaining the
pair of shapes needed for the evaluation. We publicly release
the images, GIFs, and necessary setup for reproducing this
evaluation experiment.

The results obtained (Fig. 4) show that our model is
preferred by human evaluators in both coherence and realism.
In particular, the majority of the evaluators considered our
generated shapes to be the most coherent with the query
image in 62% of the cases, and the most realistic in 69%
of the cases. Examining the per-category scores (reported
fully in the supplementary material), chairs are the most
preferred category for our model in both coherence (68%)
and realism (91%). We speculate that our model achieves
better performance because its generative nature forces it to
capture the semantics of each structural detail, while for a
reconstruction method any voxel has an equivalent meaning,
as further discussed in Sec. V-H.
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Fig. 4: Human evaluation of coherence and realism of
IC3D generated shapes against shapes reconstructed by
3D-RETR [41]. IC3D shapes were considered more coherent
with the input image 63% of the times and more realistic
69% of the times. Among the unanimous decisions (5/5 or
0/5 votes), 72% were in favor of IC3D for its coherence and
85% for its realism.
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Fig. 5: Generation from occluded views. Our model correctly
generates plausible and realistic shapes even for unseen parts.

B. Occluded and partial image views

We study the generative power of IC3D when the condi-
tioning image presents occlusions or partial views. In these
situations several completions for the occluded parts are pos-
sible. The generative nature of IC3D allows it to produce
various shapes, each coherent with the given query image,
but presenting diversity in the unseen parts. This is evident
in Fig. 5, where only backs of chairs are shown to our
model. Despite the missing information, IC3D is capable of (1)
identifying the type of object it is presented with (as chairs),
and (2) generating chairs with plausible but diverse front parts.

C. Latent space analysis

To gain insight into how CISP embeddings encode mean-
ingful and effective representations, we analyze the learned
latent space. We project CISP embeddings by first applying
PCA, reducing them to 50 dimensions, and then using t-SNE
to project into the 2D plane. Figure 6 shows the projected
shape embeddings of the training set, in which we observe
that the categories are well separated. The figure also shows
example images depicting how shapes are organized in the

Class:

e aeroplane
car
chair

e table

o watercraft

Fig. 6: Projection of the CISP shape embeddings into a 2D
space, displaying instances of the encoded images for each
considered class at their respective locations.

embedding space. We observe how the model captures details
and subcategories, allowing it to better structure the space. For
example, notice how the height of the tables increases as d;
decreases or how shelves begin to appear as dj increases. At
the same time, for cars, notice how sports cars fade into city
cars and then into progressively larger cars as d; increases. We
also see inter-class interactions, e.g., the small cloud of buses
lies close to longest watercrafts since they share a similar form
factor when voxelized. This well-structured joint space makes
CISP the core of our guidance method, allowing us to generate
shapes coherent with input images.

D. Sketch-to-Shape generation

To additionally prove the effectiveness and generalization
capabilities of the CISP model, we test the generation of 3D
shapes by guiding our DDPM with CISP embeddings of hand-
drawn sketches. Examples of sketch-to-shape generation are
shown in Fig. 7. CISP embeddings correctly encapsulate shape
categories and even more specific intraclass details from the
hand-drawn sketches.

E. Interpolations

We show that it is possible to traverse the concept space
between two objects by interpolating between their CISP
embeddings. As in [3], we do so by moving between the
two considered CISP embeddings with Slerp (spherical linear
interpolation). We found Slerp to work much better than
standard linear interpolation, which failed to effectively blend
the two input shapes. Figure 8 shows some examples of
interpolated shapes obtained with our model. We show that
both intra- and inter-class interpolations are effective, further
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Fig. 7: The generalization power of CISP allows us to generate
coherent shapes even when feeding IC3D with a hand-drawn
sketch of the desired object. Notice how the generated samples
accurately capture characteristic aspects of the drawn items,
such as the type of chair bottom (wheels, single leg, four legs),
while still providing a degree of diversity.

proving the relevance of the knowledge captured by the CISP
embedding space. Notice in the first row how the wheels
and armrests are added to the original chair structure before
turning it into an office chair. Also notice how, in an inter-
class scenario (bottom row), the chair is first filled, then the
base is removed, and finally the legs are added, completing its
transformation into a table.

F. Ablation study

To better understand the contribution of different elements
in our model, we perform an ablation study on each of
them and report the main results in Tab. II. We evaluate
the generation performance of IC3D when E. is completely
removed and when guidance tokens from CISP and/or E, are
substituted, at inference time, with a null token. For configura-
tions using guidance images (when not using null tokens), we
use images from a different set than S,.. Unlike text-to-image
models [3], where the extra text encoder has a negligible role,
our model suffers a significant drop in performance without
E.. Specifically, in this case, the generated shapes retain their

Model guidance 1-NNA(%) COV(%)t
CISP E. CD EMD CD EMD
Yes No 68.71 6237 5149 5235
Null token  Null token | 55.14 54.00 51.99 52.70
Yes Null token | 5521 5290 51.14 52.59
Yes Yes 5455 5243 50.72 52.33

TABLE II: We analyze the impact of different guidance
elements in IC3D, testing whether removing completely a
guidance encoder or substituting it with the null token affects
the generative results. Scores are averaged over the three
considered categories. We notice that while coverage remains
similar in all cases, 1-NNA score degrades when E. is
removed.

diversity, but their visual quality deteriorates considerably.
On the other hand, using null tokens has a minor effect
on generation quality, while achieving the highest coverage
scores. This is expected, as the model is freely generating
shapes. These results indicate that CISP and E. not only offer
effective guidance, but also help to learn to generate higher
quality samples during training. Moreover, we notice that the
guidance from CISP and E, enables a tradeoff between quality
(1-NNA) and diversity (COV).

G. Generation from in-the-wild images

Although our model is trained only on synthetic data
(ShapeNet), we study its ability to generate shapes from in-the-
wild images. To perform such analysis in an exhaustive way,
we provide IC3D with images coming from three sources,
each more in-the-wild: (1) an online chair catalog, (2) a
known real-world image-shape dataset (Pix3D [48]), and (3)
pictures of an office chair captured by the authors with a
smartphone. As the samples in our training dataset, ShapeNet,
are rendered only on white backgrounds, the input images to
our model are pre-processed with a simple and completely
automatic background removal tool. Figure 9 highlights how
our model is capable of generating coherent 3D shapes even
in these situations, demonstrating potential for automatic use
in controlled environments, such as industrial settings. As
already seen in Fig. 5, also in this scenario IC3D introduces
a level of coherent variability to the generated shapes when
occlusion and partial image views are given, making it even
more appealing for applications in graphics and design.

H. 3D Reconstruction abilities

We investigate the ability of our model to perform single-
view 3D shape reconstruction. We compare our generated
shapes against several baselines [42], [43], [44], [45], [46]
and SoTA works [41], [47], evaluating their Intersection over
Union (IoU) and F-score. Since IC3D is a generative model,
we display the maximum scores obtained when sampling an
increasing amount of shapes. Results, presented in Tab. III,
show that our generative model achieves a satisfactory perfor-
mance, on par with all baselines, even when used for 3D re-
construction, although this was not our target. Figure 10 shows
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Fig. 8: The regularity of our CISP concept space allows IC3D to generate consistent shapes even when interpolating between
two unrelated embeddings. Notice how the intermediate shapes mutate smoothly while maintaining perfect structural realism
throughout the transformation. At each interpolation step (from 0.0 to 1.0), only a few, crisp structural details are changed,
behavior that we observe indifferently in intra-class (rows 1-2) and inter-class (row 3) interpolations.
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[42] [43] [44] [45] [46] [41] [47] (D ) (10) (15)

IoU 0,592 0,633 0,554 0,701 0,664 0,719 0,761 0,579 0,633 0,649 0,658
F-Score 0,377 0,409 0,416 0,445 0,485 0,492 0,572 0,363 0402 0414 0421

TABLE III: Reconstruction performance of IC3D against 3D reconstruction models. To evaluate our reconstruction performance,
we sample n shapes (n in brackets) and report the maximum reconstruction metric obtained. Being IC3D a generative model,

its reconstruction score increases as we sample more shapes.

Generated Shapes

Input Image Generated Shapes
Fig. 9: Generation from smartphone photo in a controlled
environment and catalogue photo (first row) and from pix3d
images (second row). Backgrounds are removed by an au-

tomatic tool before feeding them to IC3D, which is able to
generate coherent and realistic shapes in all these settings.
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how our shapes are more structurally correct and thus realistic,
although this is often not reflected in the reconstruction metrics
(which focus only on voxel correspondence).

VI. DISCUSSION AND LIMITATIONS

The experiments presented in the previous sections highlight
the ability of our pipeline to produce structurally realistic
and diverse shapes, correctly capturing the input data distri-
bution. They also prove the applicability of DDPMs for the
image-driven generation of voxel-based shapes. To this end,
we presented CISP, a model exploiting contrastive training
to learn a joint embedding space for images and shapes.
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Fig. 10: We investigate the application of IC3D to 3D re-
construction, comparing its generated shapes to the recon-
structions of 3D-RETR [41]. Being optimized on mere re-
construction losses, 3D-RETR achieves higher reconstruction
scores (IoU); however, it fails to capture small details, such as
the thin legs of a tall chair, which are instead well modeled
by IC3D.

We leveraged its well-structured embedding space to guide
IC3D generation toward query images. Our quantitative results
showed the effectiveness of IC3D in generating high-quality
shapes. Our human evaluation survey also confirmed that
IC3D achieves higher structural realism than a competitive
3D reconstruction model while maintaining consistency with



the query image. We speculate that the generative nature
of our model forces it to learn the structural semantics of
the training data distribution, to be able to generate diverse
but coherent samples. Instead, most reconstruction methods
focus only on minimizing a reconstruction metric, without
giving any importance to the realism, integrity, and structural
correctness of the produced shape. For this reason, given for
example the task of reconstructing a chair with thin legs
(Fig. 10), if a reconstruction model were to omit an entire leg,
its reconstruction score would not be significantly impacted,
but the chair would certainly fall over. The generative nature
of our model and the usage of a well-structured joint image-
shape embedding space, instead, enforces the inductive biases
necessary to learn the importance of producing stable chair
legs.

The main limitation of IC3D resides in its low sampling
speed, an issue that is well-known for simple DDPM models as
the one we employ. Several techniques were recently presented
to obtain a substantial speed-up [49], [50], [51], [52], and
further research could be invested into integrating them within
our pipeline. In order to explore the capabilities of CISP-
guided DDPMs for image-conditioned shape generation, we
developed IC3D focusing on the simplest 3D representation:
voxels. This allowed us to decouple the complexities due
to the representation (e.g., point clouds [53], [27]) from the
capabilities of the model. We are aware, however, of the
limitations of voxels, in particular regarding their high scaling
cost. Future extensions will expand our work to produce more
complex 3D data, such as point cloud or implicit functions.

Experiments in Secs. V-D and V-E highlight the importance
of the CISP embedding space for producing high quality
realistic results. In its current form, CISP was trained on
ShapeNet, a dataset well-known but limited in size. Training
CISP on larger datasets would allow for a stronger general-
ization power, also improving its effectiveness as a zero-shot
model. Furthermore, the extension of our single-view pipeline
to multi-view guidance through CISP embeddings represents
an exciting research direction for future work.
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Supplementary Material

A. DIFFUSION MODELS

Denoising Diffusion Probabilistic models [1], [2] are
latent variable models consisting of two processes: the
forward noising process ¢ and the backward denoising
process p. We define x( as the (clean) input data and
z1,...,x7 as the latent variables sampled at each noising
step, each with the same dimensionality as x. The
forward process is a fixed Markov chain gradually adding
noise to the data with a variance schedule fi, ..., 8.
Each forward step is then a Gaussian transition fol-
lowing q(z¢|zi—1) := N (241 — Brae—1; 5 I). With a
well-designed variance schedule and a sufficiently large
T, we get that x7 converges to an isotropic Gaussian
distribution. Also the backward process is parametrized
by a Markov chain with Gaussian transitions, but it
is learned instead, and the initial state is sampled
from xp ~ N (z7;0;I). Backward transitions follow
p(xi—1|xy) := N (zi—1; po(xe, t); Xg(a, t)), where 6 are
the model parameters. A crucial property of this for-
mulation is that the defined forward process allows us to
directly sample from any given timestep. In fact, defining
ar=1—pF;and oy = HZ:O as we can write the marginal
at timestep ¢ as

q(xi|zo) = N (w; Vawwo; (1 — a)I), (1
which allows us to sample z; as
T = Vagrg + V1 — age, € ~N(0,1). )

B. TRAINING APPROACH AND SAMPLE GENERATION

As g and p form a Variational Auto-Encoder [3],
we can write a variational lower bound (VLB) [3]
and use it as objective for the model. However, Ho et
al. [1] propose a reparametrization of pg(xy,t) allowing
a simpler objective and better sample quality with respect
to optimizing the VLB. Instead of predicting g (x4, 1),
they propose to predict the noise €, expressing pug(x¢, t)

as
ol t) = —= (a1 — ——gy

Qi 1— Qi
This formulation allows for a simpler objective function,

which is a reweighted form of the variational lower
bound:

(z1,1)).  B)

Lsimple = Et,xo,ﬁme - GQ(IEt, t)|‘2]

“

As this formulation gives no learning signal for the
variances Xg(x¢,t), Ho er al. [1] propose to fix Xg(z¢, t)
to time-dependent constants o7 = ;. We can then train
the model by randomly sampling a timestep ¢, applying
Eq. (1) to get a noised sample z;, use (z,t) as input to
our model to predict €y(x¢,t) and optimize the loss in
Eq. (4).

To sample from the trained model, we first generate a
sample 7 ~ N(0,1) and we use the trained network to
predict €p(x¢,t), thus obtaining pg(x¢,t) from Eq. (3).
We can now sample z; 1 ~ N(z4_1; pg(z¢,t); 021).
This process is repeated recursively, eventually obtaining
xo, the generated output of our pipeline.

C. GUIDANCE

We apply classifier-free guidance [4] to guide our
model. To this end, we jointly train a conditional and
an unconditional model, then we make predictions by
combining their score estimates to step toward the guid-
ance direction. To jointly train a conditional and an
unconditional model, we replace with probability p the
input conditioning with a null token (). At inference
time, we combine the conditional and unconditional
predictions as

o (e, t|y) = eo (e, t]0) +w - (€o(e, t|y) — €o(ze, t]0)),

&)

where y is the guidance token and w > 1 is the guidance
scale. We apply classifier-free guidance with p = 0.1 on
image tokens and CISP embeddings independently.

A. Guidance scale

In the original paper [4] and in GLIDE [5], both
dealing with text-to-image generation, it was shown that
the guidance scale balances between quality and diver-
sity: higher guidance scales produce samples of higher
quality and more coherent to the conditioning tokens,
thus reducing the sample diversity. However, in [6] the
authors find the guidance scale to only affect photoreal-
ism (e.g., lighting, transparency) and not diversity, thus
obtaining images correctly matching the input text across
different guidance scales. We also find that the diversity
of our generated shapes is independent of the guidance
scale, although in our case 1-NNA and visual realism
also remain similar. This could be due to the nature of
our 3D representation. Indeed, voxels only represent the



1-NNA(%)

Shape Model CD EMD
Unguided 62.78 61.13
Class-guided 63.23 61.95
Aeroplane CISP 75.12 66.94
Null token + null token 5893 56.93
CISP + null token 58.11 54.47
CISP + E. (IC3D) 57.64 53.89
Unguided 58.17 57.01
Class-guided 57.25 56.37
Car CISP 6223 58.69
Null token + null token 53.20 53.11
CISP + null token 53.35 52.04
CISP + E. (IC3D) 52.44 51.68
Unguided 70.34  71.39
Class-guided 68.98 68.98
Chair CISP 68.77 61.49
Null token + null token 53.30 51.97
CISP + null token 54.18 52.20
CISP + E. (IC3D) 53.58 51.73
Unguided 63.76  63.18
Class-guided 63.15 62.43
Average CISP 68.71 62.37
Null token + null token 55.14  54.00
CISP + null token 5521 52.90
CISP + E. (IC3D) 54.55 5243

TABLE I: Extended ablation study on CISP and E.. Best
results are highlighted in bold.

shape of an object and do not consider complex aspects
such as textures and light effects. Thus, if low guidance
scales already obtain coherent and realistic shapes, we
do not expect that more relevant details can be added
when increasing the guidance scale.

B. Guidance tokens ablation

Our approach leverages both CISP and E. tokens to
produce shapes that are realistic and coherent to the input
image. As discussed in the main paper (Sec. 5.6), training
a model with only E. tokens is not effective in guiding
the generation toward the input image. Differently, even
though the introduction of CISP tokens enables an ef-
fective guidance, the joint use of E. and CISP tokens
provides even better results, allowing superior modeling
of low-level details and symmetries.

To further investigate the role of our guidance ele-
ments, we extend here our ablation by testing our model
in 3 additional settings. First, we analyze the impact of
training our DDPM in an unguided and class-guided
setting, as to consider these two setups as baselines
for our image-guided method. In the unguided setting,
we train multiple models to generate shapes without
any guidance input. The class-guided scenario, instead,
focuses on a single model, which is guided by a class

11

token to generate shapes of different categories. The
results, reported in Tab. I, show that unguided and
class-guided models obtain scores comparable to those
of CISP-only guidance. CISP-only guidance, however,
allows us to drive the generation through an input image
instead of a class token, resulting in a more fine control
of the generated shapes. As reported in the main paper,
the addition of E. at training time allows us to obtain
much higher generation quality. Instead, at generation
time, replacing its embeddings with the learned null
token at generation time does not significantly impact
the results.

D. ADDITIONAL GENERATION METRICS

Following PVD [7] and PointFlow [8], we also mea-
sure the results of our model on Minimum Matching
Distance (MMD) and Coverage (COV). We define S,
as the set of generated samples and S, as the set
of reference samples (taken from the test set), with
|Sr| = |Sg|. Minimum matching distance measures the
distance from each sample in S, to its nearest neighbor
in Sy. It is defined as

MMD(Sy, S;) (6)

Z min d(g, r

geq

\SI

where d(.) is a distance metric. As done in the literature,
we consider both Chamfer Distance and Earth Mover’s
Distance. While MMD measures the quality of the
generated samples, it does not take into account their
diversity. A measure of their diversity is given by COV,
widely used to complement MMD.

COV measures the percentage of samples in S, that
are matched with at least one of the samples in S;. A
match is defined as the nearest neighbor according to a
distance function d. COV can then be defined as

arg min,cg. d(g, €S
| arg eS’S(|9 r)lg € Syl o

Tab. II shows MMD and COV results of our model
compared to previous works. Our model is comparable
to the others in MMD, which slightly suffers from the
conversion from voxel to point cloud; on the other hand,
it obtains significantly higher results in COV in nearly all
cases. In these two cases LION [12] performs slightly
better, however our model is the second best and still
competitive to it.

COV(S,, Sy) =

E. GENERATION METRICS FOR ADDITIONAL
CATEGORIES

We report in Tab. III our results on the table and
watecraft category, on which generative models in the
literature do not compare.



MMDJ COV (%)t
Shape Model CD EMD CD EMD
Shape-GF[9] 2.703 0.659 40.74 40.49
DPF-Net[10] 0.264 0.409 46.17 48.89
PointFlow[8] 0.224 0.390 47.90 46.41
Airplane [11] 0.221 0.385 49.02 44.98
PVD[7] 0.228 0.380 48.88 52.09
LION[12] 0.219 0.372 47.16 49.63
Ours 0.224 0.386 54.03 54.13
Shape-GF[9] 9.232 0.756 49.43 50.28
DPF-Net[10] 1.129 0.853 45.74 49.43
PointFlow[8] 0.901 0.807 46.88 50.00
Car [11] - - - -
PVD[7] 1.077 0.794 41.19 50.56
LION[12] 0913 0.752 50.00 56.53
Ours 1.083 0.812 50.90 54.93
Shape-GF[9] 2.889 1.702 46.67 48.03
DPF-Net[10] 2.536 1.632 44.71 48.79
PointFlow[8] 2.409 1.595 42.90 50.00
Chair [11] 2415 1.564 49.66 50.22
PVD[7] 2.622 1.556 49.84 50.60
LION[12] 2.640 1.550 48.94 52.11
Ours 2492 1.573 51.08 51.44

TABLE II: Comparison of our model on generation

metric against other works. The car category was not part

of the evaluation of [11]. Best results are highlighted in

bold.
1-NNA(%) MMD,, COV (%)t
Shape CD EMD CD EMD CD EMD
Table 55.63 53.89 2326 1.573 5385 54.10
Watercraft  56.95 54.03 1.984 1453 5357 52.50

TABLE III: Generation performance of IC3D on addi-
tional object categories.

F. CONSIDERATIONS AGAINST STANDARD
RECONSTRUCTION METRICS

As discussed in the main paper, metrics such as IoU
and F-score fail to capture properties such as realism,
integrity and structural correctness of 3D shapes. Indeed,
they only measure the reconstruction quality by consider-
ing the number of correctly predicted voxels values. As a
consequence, models trained to optimize these quantities
can generate structurally wrong shapes, such as tables
and chairs with discontinuous or missing legs, or cars
with flat wheels. Indeed, such errors are caused by only
a few wrongly predicted voxels, thus having a small
impact on metrics such as IoU and F-score. Moreover,
IoU is sensitive to the slightest shift or scale of the
predicted shape with respect to the ground truth. This
is problematic for our model, since, being generative, it
may produce a conceptually correct shape but place it
slightly scaled or shifted compared to the ground truth.
Examples of these scenarios are highlighted in Fig. 1.
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3D-Retr Ours
0.61 0.48

T 9

0.85 0.77

¢ &
*

Fig. 1: Even if our model produces coherent and re-
alistic shapes, IoU favors the shapes reconstructed by
3D-RETR [13], which may contain structural integrity
problems. Although this image is already reported in
the main paper (Fig. 10), we report it here for ease of
discussion.

Input Image GT

s
I
*

Task 1

Shape 1

Shape 2

Which shape is more realistic?

Which shape better represents the image undemeath?

Fig. 2: Human evaluation interface. The query image is
shown only after the first question has been answered.
The second question is unlocked togheter with the image.

Although our model produces realistic and structurally
intact shapes, they may exhibit different details and be
slightly scaled or shifted. This is due to the probabilistic
approach and heavily impacts our overall score. These
considerations led us to perform a human evaluation,
reported in the main paper, in order to evaluate both our
coherence to the query image and the realism of our
shapes from a human perspective.



Votes for IC3D (%)

Category 0/5 1/5 2/5 3/5 4/5 5/5 3/5 or higher
Aeroplane  6.00 16.50 16.00 24.50 19.50 17.50 61.50
Car 1250 950  19.00 23.50 19.50 16.00 59.00
Chair 7.50 11.00 13.00 20.00 16.50 32.00 68.50
Overall 8.67 1233 16.00 22.67 18.50 21.83 63.00
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TABLE 1V: Coherence per-class human evaluation results. Our model obtains the majority vote (in bold) on all

object categories.

Votes for IC3D (%)

Category 0/5 1/5 2/5 3/5 4/5 5/5 3/5 or higher
Aeroplane 350 1250 19.00 16.50 21.00 27.50 65.00
Car 9.50% 18.50 20.50 1850 19.00 14.00 52.00
Chair 4.00 4.00 1.50 9.50 20.00 61.00 91.00
Overall 5.67 11.67 13.67 14.83 20.00 34.17 69.00

TABLE V: Realism per-class human evaluation results. Our model obtains the majority vote (in bold) on all object

categories.
3D-R2N2 OGN  Pixel2Mesh IM-Net Pix2Vox++/F 3D-RETR TMVNet Ours Ours Ours  Ours
[14] [15] (el [17] (18] [13] [19] )] &) 10 a3
Aeroplane 0.512 0.587 0.508 0.702 0.607 0.704 0.691 0.540 0.600 0.620 0.630
Car 0.798 0.828 0.670 0.756 0.841 0.861 0.870 0.790 0.824 0.833 0.838
Chair 0.466 0.483 0.484 0.644 0.548 0.592 0.721 0.407 0476 0.494 0.506

TABLE VI: Per-class IoU single-view 3D reconstruction results.

3D-R2N2 OGN  Pixel2Mesh IM-Net Pix2Vox++/F 3D-RETR TMVNet Ours Ours Ours  Ours
[14] [15] (el [17] (18] [13] [19] )] &) 10y a3
Aeroplane 0.412 0.487 0.376 0.589 0.583 0.612 0.594 0492 0.543 0.561 0.570
Car 0.481 0.514 0.486 0.304 0.564 0.511 0.602 0.394 0.425 0.433 0.439
Chair 0.238 0.226 0.386 0.442 0.309 0.352 0.520 0.203 0.238 0.248 0.255

TABLE VII: Per-class F-score single-view 3D reconstruction results.

G. HUMAN EVALUATION ADDITIONAL MATERIAL

Interface details We report additional details on the
human evaluation procedure. Fig. 2 shows the inter-
face presented to our human evaluators. To ensure that
the evaluators would not be biased by our interface,
we adopted the following precautions: (1) the shapes
generated by our model and by 3D-RETR are placed
to the left or to the right randomly. (2) the GIFs are
synchronized to allow for a direct comparison of details.
(3) the query image is centered to avoid a closeness bias.
Throughout our evaluation campaign, we recorded only
the anonymized answers of our evaluators. We did not
record any personal information, and we made this clear
to each participant.

Per-class results We report the per-class human evalua-
tion results in Tabs. IV and V. Human evaluators prefer
shapes generated by our model for both coherence and

realism in all categories. Notice how the scores obtained
by our model for the chair class are the highest among all
categories. Our model achieves the majority of the votes
for realism in 91% of the tested shapes. For cars, instead,
we register the lower margin, while still being preferred
by the evaluators. We think this is because cars are
characterized by less complex shapes, thus both models
produce very similar results, forcing the evaluators to
chose almost randomly between the two. Single-view 3D
reconstruction results (Tabs. VI and VII) also support
this hypothesis, as, for most models, cars are the best
reconstructed class, while chairs are the worst. In fact,
among the three tested categories, chairs display the most
complex structure, as they often present thin elements.
For example, legs and armrests are often modeled incom-
pletely or incorrectly by reconstruction pipelines. Our
model IC3D, instead, thanks to its generative nature, is
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Fig. 3: Voxel diffusion process. At each diffusion step, noise is added to the volumetric data, and samples are
thresholded at 0.5 to visualize binary data. Originally filled values are shown in red for comparison. Step 1000 is
displayed also without red highlighting, showing how the original shape is completely lost.
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Fig. 4: Distribution of values throughout the forward process. We observe that the diffusion process progressively
transforms the initial distribution into a standard Normal distribution.



able to correctly produce structurally realistic samples.

H. ANALYZING VOXEL DIFFUSION

As voxel DDPMs have never been deployed before,
we study the effect of the diffusion process with Gaus-
sian transitions on voxels. In fact, being voxels binary
data, we may ask if a Gaussian process is effectively
able to gradually destroy the information in a sample,
which is crucial for the reverse step.

We study the distribution of volume values across
different steps in the forward diffusion process, and show
the results in Figs. 3 and 4.

Specifically, Fig. 3 visually shows the effect of the
forward process on a binarized shape. We highlight in
red voxels with value 1 belonging to the original shape
and in green voxels with value 1 which are not from the
original shape. We can observe both how originally filled
voxels are erased by the process and how new voxels are
filled. The result of the last diffusion step is displayed
with and without highlighting, to show that information
about the original shape is lost.

In Fig. 4, we analyze the distribution of the data,
comparing it to a standard Normal distribution at dif-
ferent timesteps by computing Quantile-Quantile (QQ)
and Kernel Density Estimation (KDE) plots. QQ plots
assess the plausibility that a set of data is coming
from a theoretical distribution (in our case, a standard
Normal distribution) by plotting their sets of quantiles
against one another. Data coming from the theoretical
distribution give origin to a straight line, as in our case.
Instead, KDE plots allow us to visualize the distribution
of our data by estimating its density function. Fig. 4
shows QQ and KDE at different timesteps, proving
how the sample distribution progressively approximates
a standard Normal distribution.
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