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Abstract—In the field of autonomous vehicles, the detection
of road line markings is a crucial yet versatile component.
It provides real-time guidance for navigation and low-level
vehicle control, while it also enables the generation of lane-
level HD maps. These maps require high precision to provide
low-level details to all future map users. At the same time,
control-oriented detection pipelines require increased inference
frequency and high robustness to be deployed on a safety-
critical system. With this work, we present OptimusLine, a
versatile line detection pipeline tackling with ease both scenar-
ios. Built around a frame-by-frame transformer-based neural
model operating in image segmentation, we show that Opti-
musLine achieves state-of-the-art performance and analyze its
computational impact. To provide robustness to perturbations
when deployed on an actual vehicle, OptimusLine introduces a
scheme exploiting temporal links between consecutive frames.
Enforcing temporal consistency on each new line prediction,
OptimusLine can generate more robust line descriptions and
produce an estimate of its prediction uncertainty.

I. INTRODUCTION

The detection of road markings is highly significant for
automated vehicles. The road lines convey real-time infor-
mation crucial to the vehicle’s navigation, as well as to its
self-localization. Knowledge of the road line placement also
allows the vehicle to predict the behavior of other road users,
and is fundamental when constructing HD maps, which are
commonly used by autonomous vehicles [1].

Being essential to multiple tasks, the requirements behind
a line detection pipeline can be various and diverse. When
mapping, the retrieved line information must be highly
precise to respond to the demands of an HD map. When
adopted to navigate the road or to control the vehicle [2],
[3], instead, the detection must not only be performed at
high frequency, but it must also provide guarantees on its
robustness to perturbations and disturbances, as its output is
fed into safety-critical control components.

Over the years, many approaches have been proposed to
tackle the task of line detection [4]. Initial efforts primarily
focused on traditional computer vision algorithms [5], [6],
relying on geometric techniques and low-level pattern recog-
nition. With the advent of deep learning, data-driven models
took over the field thanks to their higher detection perfor-
mance. Several works, such as [7], [8], adopted convolutional
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Fig. 1. Overview of OptimusLine. Every camera frame acquired by the
vehicle’s front camera is segmented independently through a SegFormer
network. The resulting predictions are then projected into the Bird’s Eye
View (BEV) plane, which is isometric to the road surface. The last n BEV
predictions are aligned according to the vehicle’s corresponding trajectory,
after which a per-pixel aggregation is performed, to obtain an enhanced
prediction map with enforced temporal consistency. Additionally, a per-pixel
uncertainty estimate can be computed at no extra cost. As the aggregation is
efficiently performed incrementally at every new frame arrival, OptimusLine
can provide enhanced BEV prediction and uncertainty map in an online
fashion, as required by downstream mapping or control driving modules.

neural networks (CNNs) for their superior pattern recognition
capabilities. These networks were typically trained in an
image segmentation regime, and would thus predict the
presence or absence of line markings in each image pixel.

Recently, the deep learning community has seen a surge
in the use of a more performant architecture, the trans-
former [9], which exploits the attention mechanism to better
identify visual global patterns. To exploit this advancement,
new line detection models have been recently developed [10],
[11]. Early works in this direction take inspiration from
the attention mechanism but rely on highly customized
architectures to enforce inductive biases specific line detec-
tion [12]. Interestingly, such works moved from producing
a full description of the lines, via image segmentation, to
outputting only a compressed representation. In particular,
some works only predict the coordinates of a few points
belonging to the lines [13], while others provide a parametric
line representation, such as a Bezier curve [&].

Although these representational choices might seem effi-
cient, they highly constrain the capabilities of the network,
limiting its generality and making it more prone to error.
Indeed, parametric models rely on the choice of a fixed
representation, which is typically hard to make a priori. Lines
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are often represented as splines and, to limit the number of
parameters, assumptions are made on the regularity of the
curves and the parallelism among line markings [10]. These
assumptions might break down when modeling complex
urban scenarios or in the presence of lane splits and merges.
Analogously, identifying only a limited number of line points
poses the problem of undersampling, potentially missing
important details of the line shape. Thus, to provide a
finer and more suitable representation [3] to safety-critical
control systems, a model fitting is still required, and the
computational cost is only shifted to later AV stages.

For the above reasons, we argue that a segmentation
mask remains a more favorable representation, as it can be
computed quickly by deep models and has the advantage
of retaining the same level of precision as the source data.
In this way, it is possible to easily downsample it only
when really needed (e.g., in real-time tasks) [3], while it
can still be consumed entirely in situations requiring fine-
grained details, such as HD mapping [14], [15]. Despite
this fact, to the best of our knowledge, none of the state-
of-the-art transformer-based models for road line detection
performs image segmentation. In Sec. III-A, we explore this
research direction, presenting a transformer model for frame-
by-frame line segmentation that surpasses state-of-the-art
performances while maintaining high-resolution information
of all the lines and yet allowing for high-frequency operation.

Before deploying a line detection algorithm on an au-
tomated vehicle, its robustness should always be carefully
addressed, especially when based on deep learning. In the
line detection literature, however, robustness and consistency
are seldom analyzed. The robustness of a pipeline is defined
as its ability to function reasonably well even when affected
by perturbations and disturbances, which are common in
the context of autonomous vehicles (sensor noise, high
dynamism of the external environment). One way to improve
the robustness of a system is by ensuring that its output is
consistent when perturbed, and that it remains consistent over
time. In this sense, consistency is a crucial component for
any autonomous driving pipeline. Thus, studying these two
properties becomes necessary, especially as deep learning
models are known to produce overconfident predictions and
poorly judge their uncertainty [16]. To delve deeper into
this issue, in Sec. III-B we present an efficient method to
enhance our frame-by-frame pipeline with a time-consistency
mechanism. We show that we can exploit time dependencies
in the observed road segments to filter noise in each predicted
frame, producing more robust line measurements over time.

We name the resulting pipeline, achieving precise and
robust road line segmentation, OptimusLine (Fig. 1).

II. RELATED WORK

Earlier approaches to road line detection leveraged tra-
ditional computer vision algorithms [17], such as Hough
Transform [18], Canny edge detection [19], and Laplacian
of Gaussian (LoG) [20]. These methods, however, often
falter in complex environments, failing to handle occlusions,
changes in lighting conditions, and road surface variations.

For this reason, deep learning approaches have gradually
replaced them. Past works generally adopted a Convolutional
Neural Network (CNN), with an encoder-decoder structure.
The encoder is responsible for extracting multi-level feature
maps from the input image, while the decoder interprets
these features to predict information about the line. This
information comes in various formats. [21], [22] produce
a list of key points belonging to the lines, which can
be interpolated at need to produce particular line models.
Inspired by works in object detection, 3D-LaneNet [23]
predicts lines in an anchor-based format, which also exploits
a top-view road representation. Similarly, [24], [25] exploit
a CNN to estimate the authenticity of pre-computed line
candidates. 3D-SpLineNet [26], instead, directly produces a
parametric representation of the lines, in the form of 3D
splines, while Feng er al. [8] output Bezier splines.

An alternative often adopted is to treat the line detection
problem as a segmentation task, predicting an image mask
that indicates if a line is present in every image pixel. This
approach has the advantage of producing a highly detailed
per-pixel prediction of the line locations, while leaving to
the downstream components the possibility to model and
compress the line representation according to their needs,
e.g., fast inference in real-time applications [3] versus high-
precision in mapping tasks [14]. To produce a segmentation
mask, the decoder upsamples the encoded features, and
typically combines them with intermediate representations
available to the encoder to recover spatial information, as
done in U-Net [27]. Several examples of this approach can
be found in the literature. [3] adopts a simplified U-Net archi-
tecture to segment the road lines from the image background
at high frequency, and later fits them with a line model
suitable for vehicle control. In LaneNet [28], authors perform
a similar segmentation, but additionally train their pipeline
to cluster separate lines, in order to aid their fitting method.
Currently, HybridNets [29], YOLOP [7], and YOLOPv2 [30]
are the most known models for line segmentation. Hybrid-
Nets employs multiple parallel decoders to jointly segment
road lines and drivable area, showing that this multi-task
approach improves the line detection performance. YOLOP
and YOLOPv2 are derivatives of YOLO [31] modified for
panoptic driving perception. Similarly to HybridNets, they
adopt a multi-task configuration, additionally performing
drivable area segmentation and road object detection.

Recent advancements in deep learning have seen a shift
from CNNs to the transformer model [9], which is now
largely adopted also for vision tasks [32], including lane
detection. As with CNNs, these models can be trained to
output road lines in different formats: parametric models,
line points, and segmentation masks. LSTR [10] combines
a transformer with a Resnet encoder to directly predict
line parameters in the image space. The authors define
their parametrization in image coordinates to map to cubic
polynomials in the road plane, while they assume paral-
lelism for all lines to further compress their representation.
LaneFormer [12], instead, applies an attention mechanism
to output a set of point locations for each line marking.



Analogously, LATR [!1] defines a specific transformer ar-
chitecture to perform line detection in 3D world coordi-
nates, producing a set of points belonging to each line.
Differently from earlier works, they propose specific lane-
aware queries in the transformer architecture, and integrate
additional embeddings computed by iteratively estimating the
ground plane. A similar point-based line format is produced
also by PersFormer [13], which combines 2D and 3D line
detection by learning to estimate the image homography
between image and bird’s eye view (BEV) plane. Despite
the advances brought by transformers in the literature, to the
best of the authors’ knowledge, no work addresses the impact
of transformers in road line segmentation. In this work, we
bridge this gap. As seen above, producing a full segmentation
mask of the image can significantly aid further stages of
perception pipelines, both in the context of real-time control
or offline mapping, by providing richer per-pixel predictions
and thus leading to a more precise description of the road
lines. We point out that, in previous works [3], it has been
shown how a segmentation mask can be quickly converted
into a set of points when needed for fast vehicle control. In
this work, we additionally show that precise segmentation
masks can also be generated when requiring fast inference.

Although the precision of the retrieved line markings is of
primary importance, we argue that it is not the only factor to
consider when deploying a perception system on a vehicle.
As vehicles perform safety-critical operations, it is important
to enforce a certain degree of robustness in each compo-
nent. In this regard, assuring temporal consistency across
consecutive frames provides a valuable source of contextual
information that can significantly enhance the quality of
the overall pipeline. Given the temporal continuity of video
streams in typical driving scenarios, it is commonly assumed
that road lines detected in consecutive frames exhibit high
similarity. Under this assumption, various post-processing
techniques have emerged, typically relying on filtering meth-
ods that involve a parametrization of the line [3]. A common
approach is employing optical or scene flow, which estimates
the pixel-wise motion between consecutive frames. By inte-
grating these motion fields into the line detection process, the
model can enhance the road lines’ spatial accuracy and infer
their dynamics, offering a more reliable basis for temporal
interpolation and prediction [33]. Other techniques involve
tracking algorithms, such as Kalman filters [34] or particle
filters [35], which can maintain the identity and continuity
of road lines across frames. These algorithms, however, can
only be applied to a parametrized formulation of the line.
Any parametrization, however, is significantly compressed
with respect to a full segmentation mask, and thus implies
a loss of information. In this work, we study whether it is
possible to enforce a similar temporal consistency without a
loss of low-level detail.

III. OPTIMUSLINE: TRANSFORMER-BASED ROAD LINE
DETECTION WITH TIME CONSISTENCY

We present OptimusLine (Fig. 1), our pipeline for time-
consistent road line segmentation. OptimusLine includes two

components: a frame-by-frame deep segmentation model
based on the transformer architecture, and a temporal ag-
gregation module enforcing time-consistency between con-
secutive frames for improved precision and robustness.

A. Frame-by-frame segmentation

To perform an image-level segmentation of the road lines,
we exploit a transformer-based architecture. Transformers [9]
are deep learning models that have recently shown signif-
icant success across a range of natural language process-
ing tasks [36]. Initially designed for sequence-to-sequence
tasks, transformers have also proven effective when applied
in computer vision, with adaptations encompassing image
classification [32] and segmentation [37]. The transformer
architecture used in vision (ViT) [32] finds its strength
in the attention mechanism, which allows the model to
capture global dependencies between different parts of its
input. After dividing an image into patches and projecting
them in an embedding space, the transformer processes all
patch embeddings through multiple layers, each composed
of two sub-modules: multi-head attention, which handles
the exchange of information among patches, and a feed-
forward MLP, which computes a non-linear function on the
information aggregated by each token.

Training larger transformer models typically requires large
data samples, thus the community often relies on mod-
els pretrained on preliminary tasks. Pretraining is a well-
established technique and has been shown effective in the
community [38]. In recent years, several adaptations of the
classical ViT have been proposed to perform segmenta-
tion [37], [39]. Among these, SegFormer [40], relying on
a hierarchical architecture and a simple decoder, has shown
state-of-the-art performance. In this work, we finetune a
pretrained SegFormer model for line marking segmentation.
SegFormer originally comes in 5 variants (BO-B5), each
with an increasing number of parameters, and thus higher
accuracy at the cost of higher computational cost.

We consider variants BO and B4, each suitable for a dif-
ferent scenario. BO, with only 3.7M parameters, is extremely
lightweight and allows for the best computational efficiency
in online scenarios, such as when controlling the vehicle.
B4, instead, having about 17x more parameters (64.1M),
could be challenged by real-time constraints but produces
higher performance and is thus suitable for mapping tasks.
We initialize our model with weights pretrained on the
Cityscapes dataset [41]. This dataset contains urban street
scenes annotated with classes related to the autonomous vehi-
cle context, such as drivable road areas, static road elements,
vehicles, and buildings. It does not contain annotations of
the road markings, but the affinity between pretraining and
downstream task typically leads to high transfer, as during
pretraining the model had the chance to acquire features
pertinent to the road environment.

To finetune this model towards segmenting road markings,
we exploit an adaptation of the BDD100k line detection
dataset we customly obtained. BDD100k [42] is a large-scale
driving video dataset with pixel-level annotations specifically



collected for road features detection, such as road lines and
drivable area. It contains 100k samples, each taken from
a different video sequence recorded by different users at
different times and locations, leading to a very diverse set
of samples and thus encouraging model generalization. We
adapt this dataset into a specialized subset designed only
for line marking, and fixing a known unsolved issue in the
original dataset. In particular, the original BDD100k does not
provide annotations as pixel-level segmentation masks, but
only provides an approximated polyline model of the edge
between each road line and the asphalt (i.e, a polyline at
the immediate left and right of each line marking, and not
through the center of the line). At times, moreover, one of
the line edges results missing, further complicating its usage.
This representation hinders any task involving the detection
of the line, as we typically require systems to identify its
center and not its boundaries. In segmentation, additionally,
we require image masks that cover the entire line width,
which is hard to identify when one of the boundaries is
not present. We address these shortcomings of BDD100k
by processing the polyline representations and providing a
multi-class segmentation mask for each originally annotated
sample. We carefully preserve the line type categorization
(solid vs dashed, white vs yellow) to allow for more detailed
segmentation tasks. We also standardize the width of all line
markings, automatically identifying the center of each line
and enlarging it to a predefined, customizable width. This
newly generated dataset enables us to train the SegFormer
model to detect and segment line markings accurately, while
we make our processing technique available to enable further
research with our adapted dataset.'

We finetune using the Focal-Tversky loss function [43],
which combines Focal loss [44] and Tversky [45] loss.
The Focal loss helps to address class imbalance issues by
assigning higher weights to difficult examples, while the
Tversky component encourages the model to produce more
precise segmentations by penalizing both false positives and
false negatives. Let P be the predicted segmentation mask
and G be the ground truth mask. The Tversky index is then
defined as:

2 PiGs (1)

Tversky(P, G) = &g 7oy, B.(1-G )35y, (1-PIG

where P, and G; are the ¢-th pixels of the predicted and
ground truth masks, respectively. The parameters « and
B control the balance between false positives and false
negatives. The Focal loss, instead, assigns higher weights
to difficult examples through a focusing parameter v, which
helps address class imbalance. The resulting Focal-Tversky
loss is defined as:

Focal-Tversky (P, G) = (1 — Tversky(P,G))".  (2)

A larger value of + increases the penalty for mis-classifying
difficult examples. During training, the overall loss function
is computed as the average Focal-Tversky loss over all pixels
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in the image:

1
Loss = N Z Focal-Tversky (P;, G;), 3)

where N represents the total number of image pixels. By
utilizing the Focal-Tversky loss during finetuning, we guide
our model to focus on challenging examples and produce
more accurate and balanced line marking segmentations.

B. Time consistency and uncertainty estimation

Self-driving vehicles use cameras to capture high-speed
road images typically at 30 frames per second. These in-
dividual frames are then separately processed in real-time
with models aiming to identify each road line, as discussed
in Sec. II. However, at high frame rates, the same part of
the road can be captured multiple times before the vehicle
actually moves past it. A frame-by-frame approach can thus
result in a loss of valuable information, as large portions of
the scenes are discarded and recomputed repeatedly.

To exploit this information, instead, we aggregate the latest
segmentation masks, in order to improve simultaneously the
precision and temporal consistency of our predictions. An
overview of our aggregation pipeline can be found in Fig. 2.
To prevent perspective-based distortions, we perform the
aggregation in the Bird’s-Eye View (BEV) plane, which is
isomorphic to the world ground plane and can be obtained
through a simple calibration-based homography [46]. The
use of the BEV plane is largely employed in the literature,
especially when fitting a model to perform trajectory con-
trol [47], and is thus readily available. The prime benefit
of aggregating the segmentation masks in the BEV-plane
lies in the lack of nonlinear distortions due to the vehicle
motion, which are instead present in the image-plane. This
simplifies the aggregating algorithm, a crucial benefit for
real-time performances. Upon acquisition of a frame f;,
we generate a segmentation mask m; using our finetuned
model, as detailed in Sec. III-A. Each segmentation mask
my 1s subsequently projected into Bird’s-Eye View (BEV)
to produce a BEV mask b;. This mask depicts the road
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Fig. 3. BEV mask alignment. (a) The segmentation mask m; is projected
onto the BEV plane to obtain (b). (b) b; is rotated to match the global
reference frame (r¢). (c) r¢ is aligned to match the previous mask for
aggregation.
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Fig. 4.  The entropy over the cumulated predictions can be used as
uncertainty measure of the model’s predictions. In this example, the entropy
assumes higher values on a spurious line in the center of the road, signaling
that such line is a misdetection. Similarly, we register high uncertainty
along the edges of the two line markings, as those pixels are changing most
often. In the center of the road lines, instead, we see very low uncertainty,
indicating that the network is confident about where the lines are centered.

surrounding the vehicle on a flattened plane, wherein each
pixel equates to a small square of 0.05m in the real
world. We employ a resolution of 0.0025m? /pixel, which
balances acceptable positional accuracy and computational
power demands. With the vehicle in motion, the BEV masks
obtained through several time steps represent slightly shifting
ground regions. Crucially, at any given time ¢, the road
ahead of the vehicle has been captured by the n preceding
frames t —n, ..., t — 1. Therefore, each associated BEV mask
bi_n,...,bs_1 contains some information about the same
road segment. Assuming standard camera frame rates and
vehicle speeds resulting in minor positional shifts between
the n consecutive vehicular poses, we can postulate that the
observed region is locally flat, thus all BEV masks computed
lie on the same plane. We can then align and aggregate
the latest b;_,,...,b; BEV masks given knowledge of the
vehicle motion. The motion estimate is provided by a Real
Time Kinematic GPS (RTK-GPS) sensor, typically present in
modern autonomous vehicles. Vehicular odometry could also
be used as a replacement when the GPS is not available. This
process is done iteratively in real-time, maintaining the last
bt_n,...,b BEV masks in a fixed-capacity queue, together
with their real-world spatial dimensions.

With this queue we can produce a single aggregated BEV
mask B of the entire ground plane spanned during the past
n time steps. To do so, the single BEV masks must be first
aligned. Upon acquiring each BEV mask b, (Fig. 3a), we

apply a rotation to align the vehicle heading with ¢ our Est-
Nord-Up (ENU) global world reference frame (Fig. 3b). We
then determine the spatial location and dimension of this
rotated BEV 7; in the world frame, exploiting knowledge
of the vehicle’s RTK-GPS location (z,y) (Fig. 3¢c). We can
simply relate the vehicle center of mass to the BEV reference
frame using the BEV image resolution, which in our case is
fixed at 0.05 m/pixel. Given all rotated masks 74—, ..., 7,
we can infer the dimensions of the aggregated mask B and
allocate it efficiently. Finally, we can aggregate each rotated
mask computing its location in B.

Once the different BEVs are effectively overlapped, it is
possible to aggregate their prediction to obtain a final road
line representation more consistent in time. We consider two
aggregation strategies:

Prediction Average (PA): average of the output predictions
of the network, i.e., average of the binary values that
classify each pixel as a line or background.

Logit Average (LLA): average of the logits returned by the
network before the sigmoid layer. These are real values
and have not yet been compressed to [0, 1] by the sig-
moid function; thus, they also capture more information
about the network’s confidence in its prediction.

After the aggregation, the resulting mask is thresholded to

obtain a binary mask of the road line locations.

The output of this pipeline has the same shape and size
as the single-frame predictions obtained with any SoTA seg-
mentation model. However, our mask combines information
sensed at subsequent time steps, thus enforcing an additional
degree of time consistency in its predictions. Thanks to the
way it is computed, it also does not introduce significant
delays to downstream tasks, and can thus substitute frame-
by-frame road line detectors in any line detection pipeline.

Since we obtain several aligned predictions for each pixel
over time, we can further exploit them to compute an
uncertainty measure for each pixel. We consider the output of
the last sigmoid layer of the network as probability estimates,
and use them to compute a per-pixel entropy:

H(z,y) = — Y (pilogy(pi) + (1 = p) logy(1 = p)), 4)

2

where p; is the predicted probability for pixel (z,y) being
a line marking at frame ¢ € ¢t — N,...,t. This measure
indicates how inconsistent our network has been in es-
timating the presence of a line from different samples.
H can thus be interpreted as an uncertainty map: higher
entropy values indicate higher uncertainty in pixel x, y, while
lower entropy values correspond to higher confidence. Fig. 4
shows an example of an uncertainty map and discusses its
possible uses. By incorporating this uncertainty map in the
downstream pipeline, it is possible to make more informed
decisions and improve the robustness and reliability of the
entire system, with negligible additional costs.

IV. EXPERIMENTAL VALIDATION

We validate the capabilities of OptimusLine in two steps.
First, we evaluate with known benchmarks its performance



TABLE I
SINGLE FRAME SEGMENTATION PERFORMANCE

Model Line IoU (%) 1
Yolop [7] 49.70
YolopV2 [30] 53.24
HybridNets [29] 53.82
OptimusLine-BO (ours) 53.63
OptimusLine-B4 (ours) 56.87

TABLE 11
DISTANCE ERROR AND COVERAGE PERCENTAGE ON DIFFERENT
SECTIONS OF THE MONZA ENI CIRCUIT

Chicanes Lesmo Ascari Parabolica

Sinele Frame 0.377m  0.420m  0.476m 0.690 m
g 83.0%  834%  78.0% 56.0 %
PA Acoregation  0-357m  0.398m  0.418m 0.630m
sereg 82.2%  84.3%  80.9% 56.0 %

LA Acoreqation  0:336m  0.365m  0.384m 0.560m
sereg 788%  79.4%  76.4% 50.9%

on the task of frame-by-frame line segmentation on front-
view images (Sec. III-A). This allows us to compare our
results with most of the literature, which only performs
this type of validation. Then, we quantify the performance
improvement introduced by our time consistency aggregation
(Sec. III-B). To do so, we use streams of data instead of sin-
gle frames, and we compare predictions directly in a ground
reference frame, where there is no perspective distortion.
Finally, in Section I'V-C we assess the efficiency of the entire
pipeline, required for deploying it on an autonomous vehicle.

A. Frame-by-frame segmentation

We evaluate the performance of our model on the
BDDI100k test set [42] and compare our performance against
state-of-the-art models [7], [29], [30] in terms of Intersection
over Union (IoU, also known as Jaccard index), which for
binary segmentation is defined as:

Area of overlap TP
Area of union TP+ FP + FN’

with TP, FP, and F'N being respectively the true positives,
false positives, and false negatives pixels, treating each pixel
as a binary classification task. As shown in Tab. I, our model
surpasses all current state-of-the-art models in its B4 version.
Our B0 model is instead on par with concurrent methods, but
its lightweight nature makes it more suitable for deployment
on embedded systems. A detailed evaluation of the time
efficiency of the pipelines is presented in Section I'V-C.

IoU =

o)

B. Time consistency and uncertainty estimation

To evaluate the impact of our temporal consistency, we
must rely on a dataset including continuous frame sequences
with labeled line positions in a global reference frame. Most
known datasets for line detection, however, do not satisfy
these requirements. Therefore, we resort to the publicly
available dataset presented in [3], which can offer this crucial
information. This dataset comprises road images taken from

Chicanes
Lesmo
Ascari
Parabolica ———
Excluded

Fig. 5. Map of the Monza ENI circuit employed for the experimental
validation, with different testing sections highlighted.

an instrumented vehicle, the corresponding RTK-GPS posi-
tion of the vehicle, and the ground truth GPS annotations
of each road line in the world frame. The recordings are
collected on two Italian race tracks. For the validation of our
pipeline, we employed the recordings acquired in the Monza
ENI circuit (Fig. 5), analyzing our performance through
different sections of the racetrack. Following [3], we compute
the distance between each pixel predicted as a line by our
pipeline and the actual line position (distance error, Dist).
At the same time, we assess the proportion of ground truth
points covered by at least one prediction (coverage, Cov).
With these two metrics, we can evaluate whether our ag-
gregation method provides predictions of a larger section of
the track more robustly, while also improving its accuracy
by filtering out noisy detection. It is important to notice that,
even in the case of optimal prediction, the distance error Dist
is always greater than zero. This happens as each line has
a non-zero width (approximately 0.4 m), while we compute
the distance between each predicted pixel and the line center.

In Tab. II, we analyze Dist and Cov across four relevant
sections of the Monza ENI Circuit, each presenting different
curvature profiles and thus emulating different urban scenar-
ios. We report the performance for single frame segmentation
against the aggregation methods presented in Sec. III-B.
We consider a window of n = 30 preceding frames, and
report each metric as a temporal average across all frames
in the section. The presented data underlines the added value
of enforcing temporal consistency through our aggregation.
LA Aggregation consistently ensures a significant reduction
of the distance error, albeit not improving coverage. This
approach is well suited for scenarios where our predictions
are fed into a robust line-fitting algorithm, capable of interpo-
lating between minor gaps in the data while benefitting from
its more precise nature. Conversely, PA Aggregation leads to
enhancements in coverage, accompained by slight distance
error improvements. This renders this approach particularly
advantageous when coverage is more impactful, as when
mapping a large portion of road without requiring multiple
trasversals. Fig. 6 provides a qualitative comparison of the
different approaches in two challenging scenarios.

We point out that the improvements produced by our ag-
gregation module are particularly valuable when the system
encounters specific adverse conditions, such as challenging



(a) Single Frame

(b) PA Aggregation

(f) LA Aggregation

(c) LA Aggregation

(d) Single Frame
(e) PA Aggregation

Fig. 6. Examples and comparison of the aggregation algorithms. The first
column shows the single-frame predictions without time consistency.

TABLE III
INFERENCE FREQUENCY OF OPTIMUSLINE ON A CONSUMER LAPTOP

Model Single Frame  PA Aggregation LA Aggregation
OptimusLine-B0 20.20 Hz 14.60Hz 9.80Hz
OptimusLine-B4 5.80 Hz 4.96 Hz 3.79Hz

lighting conditions or occlusions. For this reason, their
impact is limited when evaluated over long sequences, as
most frames exhibit conditions manageable by the single
frame-by-frame component. For instance, in Fig. 6a we
realize the detection of the right line is challenging for
the network, while the efficacy of our postprocessing is
compellingly evident. Both PA and LA Aggregation robustly
retrieve the undetected right line, integrating small amounts
of information over time. Notably, LA maintains a conser-
vative stance, highlighting only a slim line center, whereas
PA tends to provide a more spread-out detection, especially
at higher distances from the vehicle, yet covering the line
more completely. Conversely, in Fig. 6d a spurious line is
detected by the frame-by-frame model due to anomalies in
the road pavement, but this detection is robustly discarded
by our aggregations. PA significantly downweights this line,
which can easily be removed through thresholding. Even
more interestingly, this false positive line never even appears
when using LA, showing how this method leads to more
robust detections, at the expense of slightly lower coverage.

C. Time performance

To ensure that our system can be deployed on an ac-
tual vehicle, we finally assess the time performance of the
entire OptimusLine pipeline. Table III shows the inference
frequency of the different pipeline components. These tests
were conducted on a consumer-grade laptop equipped with a

modest GPU (Nvidia GTX 970) and a 3rd generation Intel-
i7 processor. Consequently, we can consider these results
as a lower bound, as potentially significant improvements
can be achieved using specialized automotive hardware and
GPU parallelization in the postprocessing phase. Specifically,
OptimusLine-BO performs frame-by-frame segmentation at
20 Hz, whereas with the larger variant OptimusLine-B4 the
segmentation is done at 5Hz on the Nvidia GTX 970.
Enforcing time-consistency through aggregation introduces
a minor decline in performance, attributable to the increased
computational demand and especially noticeable when com-
puting the logits average. Nevertheless, it is noteworthy that
even on a consumer-grade device, the achieved inference
frequency is sufficient for autonomous driving tasks, particu-
larly when our smaller model is employed. We thus suggest
the use of OptimusLine-BO in safety-critical scenarios re-
quiring high-frequency responses, leaving OptimusLine-B4
for more precise, low-frequency HD mapping tasks.

V. CONCLUSION

In this work, we presented OptimusLine, a time-consistent
transformer-based line detection pipeline. OptimusLine is
composed of two modules. A finetuned transformer performs
line detection through image segmentation in a frame-by-
frame manner. To train this model, we adapt a known large
dataset for the task and share this construction for future
research. Each frame-by-frame prediction is then processed
by an aggregation module, where they are cumulated over a
temporal window. Aligning all recent predictions in a single
world reference frame, we can combine the information
acquired over time into a refined prediction map, while
also computing uncertainty estimates over each output pixel.
This process effectively minimizes misdetections and reduces
false positives, allowing for more robust deployment in
safety-critical scenarios of the entire line detection pipeline.
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