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Abstract— The development of Autonomous Vehicles (AVs)
today requires precise and reliable detection of road line
markings. Indeed, recognizing road line markings from camera
images acquired by the vehicle plays a crucial role in ensuring
its safe navigation and improving its driving performance. Road
line detection is of key importance in real-time scenarios for
navigation purposes, as well as offline for the generation of
HD maps. In recent years, deep neural networks have proven
effective in performing this task. In particular, Convolutional
Neural Networks (CNNs) have helped develop multiple Ad-
vanced Driver Assistance Systems (ADAS), now fully integrated
into common commercial vehicles. This paper presents a novel
CNN-based pipeline for recognizing road line markings from
front-view camera images in an online setup, and it shows
how these detections can be aggregated offline into aerial-like
maps as a first step toward the creation of HD maps. The
proposed architecture comprises a multi-decoder to accurately
classify image pixels representing different classes of road
line markings, as well as those related to the drivable area.
The mapping system then projects the extracted road line
points into the Bird’s-Eye View (BEV) space and integrates the
extracted information with accurate localization measurements
for georeferencing. Experimental evaluations on real-world
data, including data acquired with instrumented vehicles, reveal
the effectiveness of the proposed pipeline in both frame-by-
frame detection and integrated mapping quality.

I. INTRODUCTION

Technologies based on neural networks are increasingly
being deployed in the automotive sector to solve a variety
of problems, from improving the capabilities of Advanced
Driver Assistance Systems (ADAS) to perception and control
in Autonomous Vehicles (AVs) [1], [2]. Neural networks are
trained to interpret the data acquired by the vehicle sensors
and provide useful outputs to assist the human driver or the
control system. A widely studied problem is road line de-
tection. This task has traditionally been approached through
procedural analysis of vehicle camera images, processed
using traditional computer vision algorithms [3]. However,
recent advancements in deep learning have demonstrated
the efficacy of Convolutional Neural Networks (CNNs) in
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Fig. 1. High-level and simplified overview of our architecture. We propose
a pipeline for frame-by-frame road line segmentation and subsequent
precise GNSS data fusion to create aerial road line maps. Our multi-
class segmentation network, RoadStarNet, identifies the road line markings
and the drivable area; then, we obtain precise aerial segmented maps by
aggregating and fusing data with RTK-GNSS locations.

extracting and accurately classifying road line markings from
vision data [4].

The detection of lateral lines from sensory data is required
in multiple automotive scenarios, with different degrees of
required accuracy and computational performance. In ADAS,
road line detection is important to determine the vehicle’s
position on the road and aid drivers in maintaining a safe
driving experience. In these scenarios, cameras and simple
CNNs can address the task, as commonly we are interested
only in determining the position of the two closest lines just a
few meters ahead. This task, moreover, can be performed on
a frame-by-frame basis. In self-driving vehicles, instead, road
line detection is a fundamental component for autonomous
navigation, as it provides the vehicle with information on
the road layout and allows it to make informed decisions.
Here, a more complex representation is generally required.
Accurate classification of the line types and precise detection
up to a certain distance is typically a key requirement [5].
In these two scenarios, the architecture’s design must ensure
real-time performance. In HD map generation, instead, the
detection of road lines is used to create precise digital maps
of the road environment, providing crucial information for
autonomous vehicles to make real-time decisions and safely
navigate the roads. In this case, real-time requirements can
be softened, as the map can be generated offline. At the
same time, retrieving the most accurate representation of the
road is fundamental, both in terms of segmented areas and
correctly classified lines.

In this work, we propose a novel CNN-based architecture
for the segmentation of road line markings in vehicle-
acquired images. Furthermore, exploiting also Global Nav-
igation Satellite System (GNSS) data, we show how this



network is also suitable for generating accurate aerial images
of road line markings, using our method simplified in Fig. 1.
Indeed, the presented detector is the first stage of a pipeline
for automatic semantic aerial map generation. To accurately
train the proposed CNN, we improved the annotations of
a state-of-the-art dataset [6] through label pre-processing al-
lowing also for a systematic comparison of different road line
segmentation algorithms. The proposed CNN uses a multi-
decoder structure to perform multi-class road line segmen-
tation and drivable area identification; the retrieved masks
are then used by our mapping system, which projects the
points extracted from the CNN into a Bird’s-Eye View (BEV)
space (i.e., a top-down view of the scene), and exploits the
measurements of an accurate RTK-GNSS to georeference
and integrate the extracted data. We validated our image
segmentation pipeline on state-of-the-art annotated imagery
data, and we experimentally evaluated our aerial mapping
procedure on two real-world datasets. One, for a quantitative
comparison, was acquired on the Monza race track, where
accurate, manually-annotated ground truth is available. The
other, instead, was acquired with a survey vehicle in an
urban scenario and is more prone to a qualitative analysis.
Experimental evaluations on real-world data, including data
acquired with instrumented vehicles, reveal the effectiveness
of the proposed pipeline in both frame-by-frame detection
and integrated mapping quality.

To succinctly summarize the paper contributions, we now
briefly outline the threefold core contribution of this paper.
Firstly, we propose a novel CNN architecture for multi-class
road line and drivable area segmentation, achieving state-
of-the-art performance on the considered datasets. Secondly,
we devise a processing technique to improve the road line
marking annotations of the Berkeley Deep Drive 100k dataset
(BDD100k) [6]. Thirdly, we show that our CNN is not
suitable only for frame-by-frame prediction, but can also be
effectively adopted for the generation of aerial road line maps
through RTK-GNSS-camera fusion.

This paper is organized as follows. Related work is ex-
plored in Section II. The proposed CNN-based architecture
for road line markings detection and classification, as well as
drivable area identification, is presented in Section III, while
in Section IV we illustrate our mapping technique to obtain
accurate aerial views of the survey area and its road line
markings. Finally, in Section V we experimentally evaluate
our pipeline on real-world data, including data acquired with
a vehicle equipped with a camera and an RTK-GNSS to
validate the mapping pipeline.

II. RELATED WORK

In this section, we present a brief overview of related work
on the segmentation and mapping of road line markings. The
line detection pipeline is traditionally structured in multiple
steps, as shown in [7]. The first component on which this
work focuses is line detection on the image plane. This task
has been performed using computer vision algorithms in the
pre-deep-learning era. Gradient-based approaches leverage
the sharp change in color between the pavement and the

lateral line to perform detection. In particular, the Sobel
operator and Canny algorithm have been popular choices
for this task [8], [9]. But, these geometric approaches, while
effective, were particularly subject to changes in illumination
and ambient features. Therefore required strong assumptions
to work with high accuracy. For this reason, deep-learning-
based approaches have gradually gained popularity, also
thanks to the constant release of big datasets to train the
models, like CuLane [10] and BDD100k [6], consisting of a
large number of annotated images. In particular, it has been
possible to witness the usage of CNNs as a fallback mech-
anism to traditional gradient-based algorithms [11]. Chen
et al. [12] presented a complete encoder-decoder network
designed purely to perform lateral line segmentation from
images. Recent works, like HybridNets [13], propose more
complex architectures with multiple parallel decoders to
perform road lines and drivable area detection. A similar
approach is employed by RMNet [14] to perform multi-
class road line detection. In particular, the CNN does not
return a binary mask but also the type of lines and road
paintings in the image. Recently, Garnett et al. [15] proposed
an advancement to the classical line detection task, retrieving
from a monocular camera also the 3D position of the road
lines.

Moreover, joint approaches have been proposed, employ-
ing not only images acquired with a ground vehicle but also
aerial images. Máttyus et al. [16] presented an innovative
system on an extended version of the KITTI dataset [17],
which combines images from the original dataset and aerial
ones to perform accurate road segmentation. Aerial images
can be used to generate lane-level HD maps [18], [19]. Sim-
ilarly, Homayounfar et al. [20] perform road line detection
on complex highway scenarios on a BEV space generated
by combining high-resolution LiDAR scans to generate a
detailed top view of the area of interest.

III. ROAD LINE MARKINGS RECOGNITION

In this section, we illustrate our CNN-based architecture
used to address the task of detection and classification of road
line markings, and the different loss functions considered
during the training phase.

A. RoadStarNet Architecture

Recent work, with HybridNets [13], proposed a multi-
decoder CNN architecture to address single-class line de-
tection, drivable area identification, and object detection
tasks. A dedicated decoder (segmentation head) deals with
the first two segmentation-oriented tasks, while a second
one (detection head) focuses on object detection only. In-
stead, the HybridNets shared encoder structure is com-
posed of an EfficientNet-B3 [21] backbone network con-
nected to a weighted Bi-directional Feature Pyramid Network
(BiFPN) [22] module to extract multi-scale fused features
from the input image. Indeed, BiFPN integrates features
from various image resolutions, while computing weights,
during the training phase, to estimate the relative importance



Fig. 2. Architecture overview of RoadStarNet. Given a camera image, our two-decoders CNN retrieves a multi-class segmentation of the road line
markings, together with the drivable area.

of the levels. Their segmentation decoder resizes multi-
scale features from BiFPNs via a series of upsamples and
convolutions, combines them, and feeds them into an output
module for segmentation prediction.

Inspired by HybridNets, we present our new CNN-based
architecture to address multi-class line segmentation and
drivable area identification. Similarly to RMNet [14] archi-
tecture, each of these tasks has its own dedicated decoder,
with a U-Net-like [23] structure, while keeping the same
shared encoder structure. Following the multi-task learning
paradigm, the idea is to leverage shared representations to
capture common patterns across a set of interconnected
tasks [24], thus improving overall architecture performance.
To retain additional spatial information that could potentially
be lost during the BiFPN feature fusion process and enhance
back-propagation, our RoadStarNet structure includes two
backbone-decoders skip connections.

In RoadStarNet, feature blocks have an upsample layer
followed by a convolutional layer with Sigmoid Linear
Unit (SiLU) [25] as activation function in order to improve
stability and avoid learning-related issues such as gradi-
ent exploding or vanishing. Moreover, to further improve
model stability, the feature block series follows a pattern in
which batch normalization is applied in alternating blocks.
Intuitively, at each upscale step, the lower-level features
are combined with the upper-level features by concatenat-
ing them. The network scheme thus composed is designed
to exploit multi-scale features with various feature blocks
handling different input dimensions. Finally, we added a
post-processing phase in which clusters with a small size
are discarded in an attempt to reduce the network output
noise. Fig. 2 resumes and illustrates the proposed network
architecture.

B. Training Loss Functions

Specific segmentation-oriented losses are used to train the
CNNs presented in the literature. Define Tc as the Tversky

index [26] for class c ∈ C:

Tc =

∑D
i=1 PciGci∑D

i=1 PciGci + α
∑D

i=1 PciGc̄i + β
∑D

i=1 Pc̄iGci

,

(1)
where C is the set of classes, c̄ denotes not belonging to
class c, α and β are pre-defined constants to calibrate the
magnitude of penalties for FPs and FNs, P and G are the
prediction and ground truth (image) pixel-level data. The
Tversky loss [27] is defined as:

LT =
∑
c∈C

(1−Tc). (2)

A second loss is also considered, the Focal loss [28]:

LF = −λ
1

D

∑
c∈C

D∑
i=1

GciP
γ
c̄i logPci, (3)

where λ and γ are pre-defined constants. While the Tversky
loss is more suitable when FPs and FNs need to be balanced,
the Focal loss is more capable to learn hard labels as it down-
weights the loss penalty of correctly classified targets.

In our work, we considered two losses to train our net-
work. In particular, we considered a first loss defined, as
in [13], as the sum of the Focal loss and the Tversky loss:

LF+T = ξ1LF + ξ2LT , (4)

where ξ1 and ξ2 are pre-defined constants. Also, to be able
to weigh the various classes differently, we also considered a
generalization of the Focal loss, which we define as Focal*:

LF ∗ = −λ
1

D

∑
c∈C

D∑
i=1

wcGciP
γ
c̄i logPci, (5)

where wc indicates an arbitrary pre-defined weight associated
with class c ∈ C. This loss allows us to weigh each class
individually, making it possible to fine-tune the behavior
of the network for a specific scenario. Within this paper,
RoadStarNet-F* refers to the model trained using loss LF∗ ,
and RoadStarNet-FT to the one trained using loss LF+T .



C. Training Dataset

We train our model on the popular BDD100k [6] dataset,
also used by state-of-the-art road line segmentation mod-
els [13], [29], [30]. As noted in the literature [29], however,
in this dataset the lines are annotated in a non-straightforward
way, i.e., polylines defining the two boundaries of each road
line are available, and no line-boundaries match information
is accessible. However, the dataset differentiates road lines
by their line category (white or yellow, solid or dashed,
zebra crossings, curbs, etc.). Such information in the form
of polylines is hardly usable as-is for the task of image
segmentation, where commonly image masks are used as
targets. Rendering the annotated polylines as image masks,
however, would not be suitable either. In such a way, the
network would learn to identify the edges of each line, and
not the center of the lines as desired. Post-processing the
output of the network to extract the center of each line would
also present difficulties, as such predictions are typically
noisy.

The authors of YOLOP [29] proposed to address this
issue with a processed version of the BDD100k annotations,
which was then used by subsequent works, such as [13].
To this end, they provided binary image masks indicating
the center of each road line instead of its edges. This
allowed them to train their model as a standard segmentation
network. The line width of such masks, however, is fixed-
sized and cannot be customly changed to match different
pre-defined widths (e.g., training set width). Moreover, the
processed dataset lacks multi-class matching information,
thus networks trained using this dataset cannot handle multi-
class predictions. This ability is crucial, instead, when it is
necessary to associate semantics to each line (e.g., different
driving behavior in the presence of solid or dashed lines, or
when facing a zebra crossing).

Although the introduction of these masks determined an
important advancement in the field, we propose a further
advancement with our data processing algorithm to generate
multi-class segmentation masks, maintaining the class anno-
tations present in BDD100k and allowing custom line width
size in order to facilitate network comparisons. Note that
parameters are customizable for future adaptation.

The algorithm works as follows. Given two line edges’
points L = {l1, ..., ln} and R = {r1, ..., rm} of the
same class in camera image coordinates, we first establish
whenever the two sets belong to the same line. This is
achieved by checking the proximity of l1 and r1, and likewise
of ln and rm. In other words, we check if:

||l1 − r1||2 < λ(l1, r1)δ ∧ ||ln − rm||2 < λ(ln, rm)δ, (6)

where δ is a pre-defined constant and λ : R2 → [0, 1] is a
scaling function. This scaling function is used to balance
the maximum desired distance, i.e., when the two points
are close to the horizon, the required maximum distance is
shorter due to the perspective effects of the camera. Once a
match is established, for each point li in L, the closest point
rj in R is found and the average of their positions, mi, is

taken:
mi =

li + rj
2

. (7)

The sets of L and R are finally replaced with M =
{m1, ...,mn}. This procedure generates a single edge for
each line, which can be rendered into an image mask with
lines of any given width. For coherence with the litera-
ture [29], we set this width to 8 px by default, although
this parameter is customizable for future adaptations.

IV. SEGMENTED AERIAL MAPPING
In this section, we present our road line markings mapping

pipeline to dynamically obtain top-down aerial views of the
surveyed area.

A. IPM Model and BEVs Derivation

Generally, a sensor system acquires a variety of data
that can be processed in a combined manner. The camera
provides a sequence of N images {Ii}i=1,...,N , each acquired
at time ti; for each frame, the RTK-GNSS records the
position of the vehicle and, thanks also to an inertial system
and the fusion of the sensor data, it is possible to estimate
the absolute location Li and orientation Oi of the camera at
the time of image acquisition. Pixels can be mapped into a
relative 2D coordinate system thanks to Inverse Perspective
Mapping (IPM) [31], which is used to get a BEV, namely an
aerial top-down view of the scene. The standard IPM model
consists of a 3× 3 homography projection matrix Hi with 8
degrees of freedom (please refer to [32] for details), which
describes the relationship between the camera view and the
top-down view. Intrinsic and extrinsic camera parameters are
required to determine Hi: the former are generally constant
and known as they depend on the type of camera, while
the latter are dynamic due to the vehicle motion but can be
estimated by integrating and fusing other sensors’ data or
by using calibration algorithms [33], [34]. Given a frame i,
by combining the IPM model with Li and Oi, the road line
pixels can be mapped in the world reference system.

B. Dynamic Block-Based Map Generation

Our map generation method is based on modular and
extendable blocks. The proposed method allows a dynamic
generation of map blocks saving memory and RAM con-
sumption. It initially computes the total of map blocks,
called chunks, to be generated. Intuitively, at each chunk
corresponds a set of related camera images {Ij}j=h,...,k

whose vertices fall into the chunk space domain. A chunk
can be thus derived by selecting a set of consecutive frames.
The vertices of each image Ij (with j ∈ {h, ..., k}) are
temporarily projected into the world coordinate system by
leveraging RTK-GNSS data and the IPM model. This pro-
cedure allows the algorithm to compute both the dimension
and the position of the chunks. Iteratively, given for each
frame Hj , Lj , and Oj , all pixels can be projected into
the chunk map accordingly. At this point, road line pixels
are substituted with their estimated road line marker class.
Chunks can be merged together to derive the full map of the
surveyed area.



TABLE I
EXPERIMENTAL RESULTS ON THE BDD100K DATASET BY CONSIDERING

SINGLE CLASS AND 8 PX LINE DATA.

Line Acc. Line IoU Dr.A. Acc. Dr.A. IoU
RoadStarNet-F* 82.44 44.41 89.09 88.34
RoadStarNet-FT 66.50 53.45 87.89 87.66
YOLOPv2 [30] 80.11 53.24 91.31 88.41
HybridNets [13] 59.81 53.82 86.87 86.59

YOLOP [29] 65.40 49.70 97.40 86.00

V. EXPERIMENTS

All the experiments are conducted on a computer equipped
with an Intel® CoreTM i7-3770K processor and a NVIDIA®

GeForce® GTX 970 GPU. All algorithms have been imple-
mented in Python. To test our pipeline, we considered data
composed of a large number of annotated images, as well as
data acquired with a vehicle equipped with a standard survey
sensors suite in different real-world environments.

A. Road Line Markings Recognition

We validate our model and compare it with state-of-the-art
models from the literature using the test set of the BDD100k
dataset [6]. The ground truth annotations we considered
were generated through our processing pipeline (Section III-
C). We evaluated the performance of our network on the
detection of lines and drivable area, and we compared in
Table I our results with state-of-the-art CNNs, including
HybridNets [13], YOLOP [29], and YOLOPv2 [30]. From
Table I, it is possible to notice how the proposed model
achieves the highest accuracy on the line detection task
while being almost on par with the compared approaches in
Intersection over Union (IoU). The slight drop in this metric
is justified by the fact that our network predicts slightly
larger road lines. This characteristic does not significantly
affect the final quality of the lines, but worsens the metric
when the ground truth is instead narrow. Although the
detection of the drivable area is not the focus of our work,
and is only performed to aid our line detector, our system
achieves acceptable results in terms of accuracy and IoU.
Indeed, we report values close to compared models, with
the exception of YOLOP, which however performed worse
on line detection task. Lastly, Table II shows the classification
performance obtained by our proposed method in terms
of IoU; in the considered test, although the discrepancy
is moderate, RoadStarNet-FT obtained better results with
respect to RoadStarNet-F*.

We further show, in Fig. 3, a qualitative result obtained
by testing our proposed methods on selected sample images
from the CuLane dataset [10]. RoadStarNet-FT tends to
be more conservative and therefore less prone to produce
false positives, while RoadStarNet-F* identifies lines more
decisively, thus being in our opinion more suitable for
mapping purposes thanks to his ability to achieve a higher
line mapping coverage.

(a) Ground truth (b) RoadStarNet-F* (c) RoadStarNet-FT

Fig. 3. Example of qualitative results: comparison of RoadStarNet single-
class line detection output using different training functions on images from
the CuLane dataset [10].

Fig. 4. Different areas of the Monza Eni Circuit track analyzed in our
experimental validation (Table III): Chicanes (yellow), Lesmo (magenta),
Ascari (purple), and Parabolica (orange).

B. Road Line Markings Mapping

The effectiveness of the mapping pipeline has been eval-
uated using two different datasets acquired in real-world
scenarios. The first dataset was recorded at the Monza Eni
Circuit (please refer to [35], [36] for detail), utilizing an
autonomous vehicle equipped with imaging and positioning
technologies, including cameras and an RTK-GNSS. The
dataset comprises images and georeferenced ground truth po-
sitions of the lateral lines, which can be utilized to determine
the system accuracy by comparing the output of the mapping
pipeline (i.e., the lines projected in the BEV space) with
manually mapped ones. To facilitate the comparison with
other state-of-the-art techniques, the track was partitioned
into multiple regions of interest (ROIs), depicted in Fig. 4,
that include relevant hurdles to overcome (e.g., chicanes,
tight corners).

Additionally, the system was tested in a more operational
setting using a second dataset obtained in an urban en-
vironment with a multi-camera setup and an RTK-GNSS
sensor. The acquisition took place in Tavagnacco, Italy, in



TABLE II
EXPERIMENTAL RESULTS (IOU) ON THE BDD100K DATASET BY CONSIDERING MULTIPLE CLASSES AND 8 PX LINE DATA.

single single single single double double double double
RoadStarNet white white yellow yellow white white yellow yellow crosswalk road curb

solid dashed solid dashed solid dashed dashed solid
RoadStarNet-FT 50.50 50.26 54.58 24.34 25.90 12.04 60.79 33.99 48.40 42.06
RoadStarNet-F* 43.75 42.99 48.32 26.70 23.16 11.81 51.11 30.70 41.31 37.79

the Adegliacco-Cavalicco area1. Unlike the circuit, manual
mapping annotations of the line positions were not available
in this scenario. Hence, the tests on this dataset serve as
a qualitative demonstration of the pipeline’s capability to
accurately map urban areas, including challenging sections
such as roundabouts and intersections.

We conducted our quantitative evaluation on the Monza
Eni Circuit dataset. To evaluate the performance of our
pipeline, two metrics were calculated. The first one, referred
to as the mean prediction distance (Dist.), is computed as
the mean distance between projected pixels and the center
of the reference ground truth line2. This metric does not
account, however, for the percentage of correctly predicted
points. For this reason, a second metric to be considered
simultaneously is introduced to gauge the coverage (Cov.),
i.e., the percentage of the total road line markings actually
mapped.

The results, presented in Table III, show how our
RoadStarNet-F* obtained the highest coverage, albeit at the
expense of a marginally higher mean prediction distance;
this highlights the trade-off between the considered metrics.
However, when considering the compared state-of-the-art
model with the highest coverage, YOLOPv2, we notice that
our network generally outperformed it in prediction distance,
while also slightly enhancing its coverage. When referring
to the considered tests, our model decisively identified road
line pixels. This property is clearly highly desirable for
aerial mapping, as it allows to extract more road markings
information from a single vehicle survey. Our alternative
model, RoadStarNet-FT, instead, achieved prediction dis-
tances among the lowest, while providing a satisfactory map-
ping coverage level. For this reason, its trade-off represents a
viable alternative to RoadStarNet-F* when a slight relaxation
of mapping criteria is deemed acceptable. In comparison,
HybridNets, while achieving the lowest prediction distance,
displays a highly conservative behavior and does not provide
a satisfying coverage, mapping less than 65-75% of several
sections. This behavior can be observed also in Fig. 5,
showing a visual comparison of the predictions of each
network.

Qualitative result examples are shown in Fig. 6, present-
ing the reconstructed aerial and semantic maps of selected
challenging areas in the considered urban environment of
Tavagnacco, including roundabouts and intersections. Results
suggest the effectiveness of our proposed pipeline, specifi-

1Coordinates: 46°06’43.3”N 13°13’49.4”E.
2Notice that, as the road line markings have a non-zero width, not

represented in the ground truth, this metric overestimates the error.

cally with RoadStarNet-F* as CNN, and its ability to detect
and map road line markings in the area. Different road line
markings’ colors indicate different classes; Fig. 6 shows
also that the CNN classified the points with considerable
accuracy, including crosswalks.

VI. CONCLUSIONS

In this paper, we introduced a new architecture for the
recognition and mapping of road line markings to obtain
accurate aerial images of the whole survey area. The pro-
posed CNN uses a multi-decoder to perform multi-class
segmentation of images acquired by a vehicle-mounted
camera. The segmentation masks and the images are then
projected into a BEV space and combined with RTK-GNSS
data to reconstruct an aerial view of the traveled area with
information about road line markings. We also devised a
pre-processing algorithm for the popular BDD100k dataset
to generate a more suitable ground truth for road lines.
The proposed model has been tested both on the public
dataset BDD100k against state-of-the-art models and on
datasets acquired in real-world environments to evaluate
the whole mapping pipeline. Experimental results show the
effectiveness of the proposed CNN-based pipeline and how
is well-suited for the reconstruction of complete segmented
aerial maps of large areas.
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TABLE III
MEASURED MEAN PREDICTION DISTANCE AND COVERAGE ON THE CONSIDERED SECTIONS OF THE MONZA ENI CIRCUIT TRACK: NORMAL / LIGHT
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